119 lines
3.7 KiB
JavaScript
119 lines
3.7 KiB
JavaScript
|
dojo.provide("dojox.gfx.arc");
|
||
|
|
||
|
dojo.require("dojox.gfx.matrix");
|
||
|
|
||
|
(function(){
|
||
|
var m = dojox.gfx.matrix,
|
||
|
unitArcAsBezier = function(alpha){
|
||
|
// summary: return a start point, 1st and 2nd control points, and an end point of
|
||
|
// a an arc, which is reflected on the x axis
|
||
|
// alpha: Number: angle in radians, the arc will be 2 * angle size
|
||
|
var cosa = Math.cos(alpha), sina = Math.sin(alpha),
|
||
|
p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};
|
||
|
return { // Object
|
||
|
s: {x: cosa, y: -sina},
|
||
|
c1: {x: p2.x, y: -p2.y},
|
||
|
c2: p2,
|
||
|
e: {x: cosa, y: sina}
|
||
|
};
|
||
|
},
|
||
|
twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8,
|
||
|
pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);
|
||
|
|
||
|
dojo.mixin(dojox.gfx.arc, {
|
||
|
unitArcAsBezier: unitArcAsBezier,
|
||
|
curvePI4: curvePI4,
|
||
|
arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){
|
||
|
// summary: calculates an arc as a series of Bezier curves
|
||
|
// given the last point and a standard set of SVG arc parameters,
|
||
|
// it returns an array of arrays of parameters to form a series of
|
||
|
// absolute Bezier curves.
|
||
|
// last: Object: a point-like object as a start of the arc
|
||
|
// rx: Number: a horizontal radius for the virtual ellipse
|
||
|
// ry: Number: a vertical radius for the virtual ellipse
|
||
|
// xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees
|
||
|
// large: Boolean: which part of the ellipse will be used (the larger arc if true)
|
||
|
// sweep: Boolean: direction of the arc (CW if true)
|
||
|
// x: Number: the x coordinate of the end point of the arc
|
||
|
// y: Number: the y coordinate of the end point of the arc
|
||
|
|
||
|
// calculate parameters
|
||
|
large = Boolean(large);
|
||
|
sweep = Boolean(sweep);
|
||
|
var xRot = m._degToRad(xRotg),
|
||
|
rx2 = rx * rx, ry2 = ry * ry,
|
||
|
pa = m.multiplyPoint(
|
||
|
m.rotate(-xRot),
|
||
|
{x: (last.x - x) / 2, y: (last.y - y) / 2}
|
||
|
),
|
||
|
pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,
|
||
|
c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));
|
||
|
if(isNaN(c1)){ c1 = 0; }
|
||
|
var ca = {
|
||
|
x: c1 * rx * pa.y / ry,
|
||
|
y: -c1 * ry * pa.x / rx
|
||
|
};
|
||
|
if(large == sweep){
|
||
|
ca = {x: -ca.x, y: -ca.y};
|
||
|
}
|
||
|
// the center
|
||
|
var c = m.multiplyPoint(
|
||
|
[
|
||
|
m.translate(
|
||
|
(last.x + x) / 2,
|
||
|
(last.y + y) / 2
|
||
|
),
|
||
|
m.rotate(xRot)
|
||
|
],
|
||
|
ca
|
||
|
);
|
||
|
// calculate the elliptic transformation
|
||
|
var elliptic_transform = m.normalize([
|
||
|
m.translate(c.x, c.y),
|
||
|
m.rotate(xRot),
|
||
|
m.scale(rx, ry)
|
||
|
]);
|
||
|
// start, end, and size of our arc
|
||
|
var inversed = m.invert(elliptic_transform),
|
||
|
sp = m.multiplyPoint(inversed, last),
|
||
|
ep = m.multiplyPoint(inversed, x, y),
|
||
|
startAngle = Math.atan2(sp.y, sp.x),
|
||
|
endAngle = Math.atan2(ep.y, ep.x),
|
||
|
theta = startAngle - endAngle; // size of our arc in radians
|
||
|
if(sweep){ theta = -theta; }
|
||
|
if(theta < 0){
|
||
|
theta += twoPI;
|
||
|
}else if(theta > twoPI){
|
||
|
theta -= twoPI;
|
||
|
}
|
||
|
|
||
|
// draw curve chunks
|
||
|
var alpha = pi8, curve = curvePI4, step = sweep ? alpha : -alpha,
|
||
|
result = [];
|
||
|
for(var angle = theta; angle > 0; angle -= pi4){
|
||
|
if(angle < pi48){
|
||
|
alpha = angle / 2;
|
||
|
curve = unitArcAsBezier(alpha);
|
||
|
step = sweep ? alpha : -alpha;
|
||
|
angle = 0; // stop the loop
|
||
|
}
|
||
|
var c1, c2, e,
|
||
|
M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);
|
||
|
if(sweep){
|
||
|
c1 = m.multiplyPoint(M, curve.c1);
|
||
|
c2 = m.multiplyPoint(M, curve.c2);
|
||
|
e = m.multiplyPoint(M, curve.e );
|
||
|
}else{
|
||
|
c1 = m.multiplyPoint(M, curve.c2);
|
||
|
c2 = m.multiplyPoint(M, curve.c1);
|
||
|
e = m.multiplyPoint(M, curve.s );
|
||
|
}
|
||
|
// draw the curve
|
||
|
result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);
|
||
|
startAngle += 2 * step;
|
||
|
}
|
||
|
return result; // Object
|
||
|
}
|
||
|
});
|
||
|
})();
|