dojo.provide("dojox.lang.functional.binrec"); dojo.require("dojox.lang.functional.lambda"); dojo.require("dojox.lang.functional.util"); // This module provides recursion combinators: // - a binary recursion combinator. // Acknoledgements: // - recursion combinators are inspired by Manfred von Thun's article // "Recursion Theory and Joy" // (http://www.latrobe.edu.au/philosophy/phimvt/joy/j05cmp.html) // Notes: // - recursion combinators produce a function, which implements // their respective recusion patterns. String lambdas are inlined, if possible. (function(){ var df = dojox.lang.functional, inline = df.inlineLambda, _x ="_x", _z_r_r_z_a = ["_z.r", "_r", "_z.a"]; df.binrec = function( /*Function|String|Array*/ cond, /*Function|String|Array*/ then, /*Function|String|Array*/ before, /*Function|String|Array*/ after){ // summary: // Generates a function for the binary recursion pattern. // All parameter functions are called in the context of "this" object. // cond: // The lambda expression, which is used to detect the termination of recursion. // It accepts the same parameter as the generated recursive function itself. // This function should return "true", if the recursion should be stopped, // and the "then" part should be executed. Otherwise the recursion will proceed. // then: // The lambda expression, which is called upon termination of the recursion. // It accepts the same parameters as the generated recursive function itself. // The returned value will be returned as the value of the generated function. // before: // The lambda expression, which is called before the recursive step. // It accepts the same parameter as the generated recursive function itself. // The returned value should be an array of two variable, which are used to call // the generated function recursively twice in row starting from the first item. // above: // The lambda expression, which is called after the recursive step. // It accepts three parameters: two returned values from recursive steps, and // the original array of parameters used with all other functions. // The returned value will be returned as the value of the generated function. var c, t, b, a, cs, ts, bs, as, dict1 = {}, dict2 = {}, add2dict = function(x){ dict1[x] = 1; }; if(typeof cond == "string"){ cs = inline(cond, _x, add2dict); }else{ c = df.lambda(cond); cs = "_c.apply(this, _x)"; dict2["_c=_t.c"] = 1; } if(typeof then == "string"){ ts = inline(then, _x, add2dict); }else{ t = df.lambda(then); ts = "_t.apply(this, _x)"; } if(typeof before == "string"){ bs = inline(before, _x, add2dict); }else{ b = df.lambda(before); bs = "_b.apply(this, _x)"; dict2["_b=_t.b"] = 1; } if(typeof after == "string"){ as = inline(after, _z_r_r_z_a, add2dict); }else{ a = df.lambda(after); as = "_a.call(this, _z.r, _r, _z.a)"; dict2["_a=_t.a"] = 1; } var locals1 = df.keys(dict1), locals2 = df.keys(dict2), f = new Function([], "var _x=arguments,_y,_z,_r".concat( // Function locals1.length ? "," + locals1.join(",") : "", locals2.length ? ",_t=_x.callee," + locals2.join(",") : "", t ? (locals2.length ? ",_t=_t.t" : "_t=_x.callee.t") : "", ";while(!", cs, "){_r=", bs, ";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}for(;;){do{_r=", ts, ";if(!_z)return _r;while(\"r\" in _z){_r=", as, ";if(!(_z=_z.p))return _r}_z.r=_r;_x=_y.a;_y=_y.p}while(", cs, ");do{_r=", bs, ";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}while(!", cs, ")}" )); if(c){ f.c = c; } if(t){ f.t = t; } if(b){ f.b = b; } if(a){ f.a = a; } return f; }; })(); /* For documentation only: 1) The original recursive version: var binrec1 = function(cond, then, before, after){ var cond = df.lambda(cond), then = df.lambda(then), before = df.lambda(before), after = df.lambda(after); return function(){ if(cond.apply(this, arguments)){ return then.apply(this, arguments); } var args = before.apply(this, arguments); var ret1 = arguments.callee.apply(this, args[0]); var ret2 = arguments.callee.apply(this, args[1]); return after.call(this, ret1, ret2, arguments); }; }; 2) The original iterative version (before minification and inlining): var binrec2 = function(cond, then, before, after){ var cond = df.lambda(cond), then = df.lambda(then), before = df.lambda(before), after = df.lambda(after); return function(){ var top1, top2, ret, args = arguments; // first part: start the pump while(!cond.apply(this, args)){ ret = before.apply(this, args); top1 = {prev: top1, args: ret[1]}; top2 = {prev: top2, args: args}; args = ret[0]; } for(;;){ // second part: mop up do{ ret = then.apply(this, args); if(!top2){ return ret; } while("ret" in top2){ ret = after.call(this, top2.ret, ret, top2.args); if(!(top2 = top2.prev)){ return ret; } } top2.ret = ret; args = top1.args; top1 = top1.prev; }while(cond.apply(this, args)); // first part (encore) do{ ret = before.apply(this, args); top1 = {prev: top1, args: ret[1]}; top2 = {prev: top2, args: args}; args = ret[0]; }while(!cond.apply(this, args)); } }; }; */